2015 Procurement Plan
Thermal Resource Specifications

Presentation to: NorthWestern Energy ETAC

June 4, 2015
What Has Changed Since 2013 Plan?

- Strong dollar handicaps GE gas turbine sales when compared to Siemens and Mitsubishi
- Western resource development moving from wind to solar
- Portland General Electric use of Wärtsilä 18V50SG reciprocating engines at Port Westward 2 for load/resource following
- Hydro may be able to provide some load/resource following capability currently performed by gas-fired units
What Hasn’t Changed Since 2013 Plan?

- World economic growth still slow
- Interest rates still low
- Thermal resource costs the same (or declining)
- Similar gas turbine product offerings – product development effort focused on higher capacity models (250 MW or more capacity)
Thermal Resource Basics

Three ways to spin a turbine in a thermal generation project:

- Compression of air and addition of energy to the air from fuel combustion – **Simple cycle combustion turbine (SCCT)**
- Creation of pressurized steam – either through direct heating of water by burning fuel, or use of waste heat created by combustion of fuel for other purposes – **Steam turbine**
- Sequential ignition of fuel that creates an explosion that drives a piston – **Reciprocating Engine**
Heat Rates

- The “heat rate” of a thermal resource is a measure of the amount of fuel required to produce a kWh of power.
- Turbine manufacturers often specify “lower heating value” (LHV) heat rates in product brochures.
- However, the higher heating value (HHV) heat rate for a thermal resource allows direct multiplication of the heat rate times the cost of gas (in $/MMBtu) to calculate a fuel cost expressed in $/MWH.
- The HHV heat rate of a gas turbine equals 1.108x the LHV heat rate.
Combined Cycle CT Basics

- CCCT utilizes two turbine generator sets, usually with separate shaft for each T-G:
 - Gas-turbine generator (GE Frame 7, MHI, or Siemens) – thermal energy from fuel combustion directly spins the turbine
 - Steam-turbine generator – uses heat energy from gas-turbine exhaust to create steam to spin a second turbine
- Add additional combustion capability after combustion turbine to increase steam-turbine output (duct-firing)
CCCT Duct-firing

- Standard GE Frame 7F CCCT GT-STG package allows for duct-firing – could be as much as 60 MW for a 1x1 CCCT configuration
- Duct-firing looks like a quick-start SCCT with 8400 Btu/kWh HR
- Duct-burner start and ramp to full output takes about 10 minutes due to need to have plant operator configure equipment
- On the ragged-edge of fast enough to use for spinning reserve.
How a Combined Cycle Plant works

Duct-burner

Electricity out

Air Intake

Gas Turbine

Combustion Chamber

Fuel

Heat Recovery Steam Generator

Exhaust Stack

Generator

Compressor

Steam Turbine

Condenser

Water

Steam

Warm Water

Cooling Water
CCCT Math

- Large gas turbines have a “heat rate” under 7000 Btu/kWh - describes the conversion of thermal energy into electrical energy.
- Natural gas generally priced in $/MMBtu
- Incremental cost of production = Heat Rate/1000 x (Gas Price + Variable Transportation) x (1+ End Use Gas Tax Rate) + Variable O&M
- Depending on location of unit, may need to factor incremental transmission and losses into the calculation
CCCT Incremental Cost Example

Heat Rate = 6600 Btu/kWh
Gas Price = $3/MMBtu
Variable Gas Transportation = $.10/MMBtu
Variable O&M = $2.5/MWH
Incremental Cost = (6600 Btu/kwh) /1000 x
($3/MMBtu +$.10/MMBtu) + $2.5/MWH = $23.0/MWH

Note: No end-use gas tax in Montana
But CCCT Dispatch Decisions Rarely Straight-forward

- NW CCCT fleet usually sets daily market-clearing price – wind and hydro push CCCTs in/out of the money
- CCCTs often economic HLH but uneconomic LLH - $5.0/MWH in-the-money HLH, -1.0/MWH LLH on 1/14/15
- Start-up requires multi-hour ramp-up/ramp-down – quick start package can shorten the ramp-up
- Maintenance contracts charge for starts after some maximum (around 50/yr) - $3000-$5000/start
- Best CCCT heat rate at full load
 - Heat rate increases 1% for every 5% of output reduction between 80% and 100% of rated capacity
 - Heat rate increases 2.7% for every 5% of output reduction thereafter to maximum turn-down of 50%
Pipeline Capacity Requirements

- Firm gas pipeline transportation reserved on a “Maximum Daily Delivery Quantity” (MDDQ) basis
- Transportation reservation charge calculated based on MDDQ multiplied by rate and number of days in billing period – effectively a demand charge
- Also pay monthly fixed charge and variable charge for pipeline incremental costs
- May pay 2-4 separate sets of pipeline charges between source of natural gas and delivery point (e.g. AECO-TransCanada-NWE)
Types of Open Cycle Gas Turbines

- Frame SCCTs - Primarily capacity (large/fast w/controls)
 - GE 7EA, GE 7F, Siemens 501G, etc.
 - 85-350 MW
 - Heat Rate = 9400-11,400 Btu/kWh – rarely dispatch (under 2% of hours)

- Reciprocating Engines - Primarily flexibility (small/fast)
 - 9-20 MW
 - Wärtsilä, Caterpillar (Basin Creek)
 - Heat Rate = 8300-9000 Btu/kWh – higher variable O&M affects dispatch

- Aero derivative SCCTs - Capacity and flexibility (fast)
 - GE LM6000, GE LMS100, P&W FT-8 (DGGS)
 - 10-105 MW
 - Heat Rate = 8700-9500 Btu/kWh – infrequent dispatch (under 5% of hours)
Open Cycle Turbine Dispatch

- Purchase spot market natural gas
- Infrequent dispatch complicates gas pipeline and transmission strategy – Firm transport way too expensive, but interruptible may be interrupted or reduced over winter peak
 - Avista Rathdrum – California storage and exchange via GTN
 - Back-up fuel (DGGS)
- Smaller unit size and flat HR curve may make reciprocating engines a better operational fit for flexibility requirements than other SCCT technologies
- Infrequent CT dispatch increases start-up forced outage risk
MDDQ by Unit

<table>
<thead>
<tr>
<th>Unit</th>
<th>Capacity (MW)</th>
<th>MDDQ (MMBtu/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE LMS100</td>
<td>93</td>
<td>19,833</td>
</tr>
<tr>
<td>GE 7EA</td>
<td>79</td>
<td>21,452</td>
</tr>
<tr>
<td>P&W FT-8</td>
<td>53</td>
<td>13,356</td>
</tr>
<tr>
<td>GE 7F.05 CCCT</td>
<td>308</td>
<td>48,216</td>
</tr>
<tr>
<td>plus Duct Firing</td>
<td>40</td>
<td>8160</td>
</tr>
<tr>
<td>Wärtsilä 18V50SG</td>
<td>18</td>
<td>3669</td>
</tr>
</tbody>
</table>

At 65% 7F.05 CCCT capacity factor and 20% duct firing capacity factor, NorthWestern Energy’s Montana system gas load would increase by about 2/3.
Simple Cycle for Peaking

- LMS100 – Intercooled aero-derivative with lower heat rate
- Frame 7EA – relatively inexpensive capital cost, but higher heat rate
- Pratt & Whitney FT-8 – Heat rate between LMS100 and 7EA. Units at Dave Gates Generating Station

All units would operate infrequently – dispatch model results somewhat insensitive to unit chosen for simple cycle duty, since turbines provide little protection against high energy prices.
CCCT – Frame 7F.05

- Modeled the 7F.04 in the last Procurement Plan.
- 7F.05 gradually replacing the 7F.03 and 7F.04 in the GE product line-up
- Larger than predecessor gas turbines with a lower heat rate.
- 307 MW maximum output @59°F at 3100’ – lose 20 MW of capacity for a 5100’ site
- Includes 40 MW of duct-firing (for modeling purposes, no capital cost associated with duct-fired capacity)
- Run analysis assuming air-cooled capacity and heat rate – not much difference from water-cooled
Reciprocating Engine - Wärtsilä 18V50SG

• Largest engine available (18 MW)
• Little performance degradation at higher altitudes – only need to study 5000’ version
• Excellent heat rate (for open cycle) with flat load-heat rate curve, but higher variable O&M due to shorter maintenance intervals than for traditional gas turbines.
Resource Recommendation

CCCT – GE 7F.05
Simple Cycle – GE LMS100, GE 7EA, Pratt & Whitney FT-8
Reciprocating Engine - Wärtsilä 18V50SG
Note: The Northwest Power and Conservation Council plans to use the Wärtsilä 18V50SG as the representative peaking resource in the dispatch modeling for the Seventh Power Plan
Dispatch Model Inputs

Key Dispatch Model Inputs

<table>
<thead>
<tr>
<th>Gas Turbine</th>
<th>Capacity (MW)</th>
<th>Heat Rate (Btu/kWh)</th>
<th>Capital Cost ($/kW)</th>
<th>Variable O&M ($/MWH)</th>
<th>Fixed O&M ($/kW-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE LMS100 (3500’)</td>
<td>93.2</td>
<td>8867</td>
<td>1087</td>
<td>3.47</td>
<td>17.06</td>
</tr>
<tr>
<td>GE LMS100 (5000’)</td>
<td>88.8</td>
<td>8867</td>
<td>1140</td>
<td>3.64</td>
<td>17.90</td>
</tr>
<tr>
<td>P&W FT-8 (3500’)</td>
<td>53.0</td>
<td>10,500</td>
<td>917</td>
<td>4.60</td>
<td>6.05</td>
</tr>
<tr>
<td>P&W FT-8 (5000’)</td>
<td>50.0</td>
<td>10,500</td>
<td>962</td>
<td>4.83</td>
<td>6.35</td>
</tr>
<tr>
<td>GE 7EA (3500’) – 2 Units</td>
<td>158.4</td>
<td>11,286</td>
<td>897</td>
<td>3.20</td>
<td>11.73</td>
</tr>
<tr>
<td>GE 7EA (5000’) – 2 Units</td>
<td>149.7</td>
<td>11,286</td>
<td>949</td>
<td>3.39</td>
<td>12.42</td>
</tr>
<tr>
<td>GE 7FA.05 (3100’) – ACC</td>
<td>307.7</td>
<td>6528</td>
<td>1072</td>
<td>2.50</td>
<td>9.75</td>
</tr>
<tr>
<td>GE 7FA.05 (5100’) – ACC</td>
<td>285.1</td>
<td>6524</td>
<td>1157</td>
<td>2.70</td>
<td>10.52</td>
</tr>
<tr>
<td>GE 7FA.05 DF (3100’) – ACC</td>
<td>40.2</td>
<td>8546</td>
<td>0</td>
<td>.08</td>
<td>0</td>
</tr>
<tr>
<td>GE 7FA.05 DF (5100’) – ACC</td>
<td>40.1</td>
<td>8497</td>
<td>0</td>
<td>.08</td>
<td>0</td>
</tr>
<tr>
<td>Wärtsilä 18V50SG</td>
<td>18.4</td>
<td>8314</td>
<td>1380</td>
<td>6.00</td>
<td>10.50</td>
</tr>
</tbody>
</table>
Final Discussion