ETAC Presentation - NorthWestern Energy Battery Storage Project

June Pusich-Lester
NorthWestern Energy - DSM Engineer
Today’s Presentation

- **Battery Storage Project**
 - Project Description
 - System Description
 - Installation
 - Testing
 - Integration

- **Distributed Generation**
 - Smart Grid Project
Project Description

Battery Storage Project with Renewables Integration

- Purchase, install and test small scale battery storage system
- Project funded with USB $ in 2011 & 2012
- 30 kW system with 4 hour battery backup
- Install on NorthWestern Energy distribution line
Project Description

- **Schedule**
- **Status**
 - Installation location selected – Helena Service Center Yard
 - Equipment purchase and delivered (Butte warehouse)

<table>
<thead>
<tr>
<th>Activity</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis & Reporting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System Description

- Technology - Joule.System™
System Description

- **Manufacturer**
 - Demand Energy Networks
 - Headquartered in Liberty Lake, WA
 - Launched business in 2008
 - First commercial deployment in 2011
 - Funded by private investors
 - Senior team of professionals from utility and telecom fields (Itron and World Wide Packets/Ciena)
System Description

- Manufacturer
 - Demand Energy Networks
 - 7 patents/patents pending in the core areas of power/energy conversion, power switching, batteries, battery management and network management
 - Successful commercial systems
 - several electric utilities in Pacific NW
 - high rise buildings in NYC
 - China
System Description

- **Grid.DNA™**
 - Distributed Network Architecture
 - Manages load to and from storage devices
 - No matter where located
 - Detects frequency fluctuations and reacts
 - Millisecond response
 - Instantly releasing or absorbing power to regulate load and transmission capacity
 - Cloud Based Managed Service
 - Provides infinite scalability
 - Minimizes IT infrastructure and OA&M costs
 - No software upgrades to manage
 - Open source Infrastructure
 - No time spent building core functionality
 - Speeds up development time while minimizing the size of team required
 - Multiple options allow for best of breed components when assembling the system
 - Fresh Software Approach
 - No legacy “baggage” to prevent embracing emerging technologies and solutions
System Description

- **Grid.Balancer™**
 - 30 kW Power Conversion System (PCS) & 4 Hour Energy Storage System (ESS)
 - Other sizes available
 - System size can increase down the road

<table>
<thead>
<tr>
<th>Available System Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS</td>
</tr>
<tr>
<td>ESS</td>
</tr>
</tbody>
</table>
System Description

- **Grid.Balancer™**
 - Solid state converter system (DC → AC and DC → DC)
 - Renewable Energy Integration

![Diagram of Grid.Balancer™ system](image_url)
System Description

- **Grid.Balancer™**
 - Modular, scalable energy storage
 - Advanced battery technologies with innovations in power conversion and battery management
 - **Lead acid batteries (VRLA)**
 - low energy density, lower cycle life, established supply chain, 98% recyclable, and proven safety record
 - **Lithium (LiFe)**
 - great energy density, rare earth metal with supply chain constraints, thermal concerns in multi-cell-higher voltage applications, unknown recycling, with increasingly problematic safety record. Highest lifecycle costs

NorthWestern Energy
System Description

- **Grid.Balancer™**
 - Batteries Will Be Lead Acid

<table>
<thead>
<tr>
<th></th>
<th>Lead Acid (VRLA)</th>
<th>Lithium-Iron Phosphate (LiFe) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wh/kg</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>Cycle Life at 50% DoD</td>
<td>1800</td>
<td>3600</td>
</tr>
<tr>
<td>Charge Efficiency</td>
<td>85%</td>
<td>95%</td>
</tr>
<tr>
<td>$/KWh</td>
<td>$328</td>
<td>$900</td>
</tr>
<tr>
<td>$/KWh/ Cycle</td>
<td>$0.18</td>
<td>$0.25</td>
</tr>
</tbody>
</table>

* Does not include weight or cost of required safety monitoring equipment (BMS)
System Description

- **Grid.Balancer™**
- **Battery Management Interface**
Installation

- Helena Service Center Yard
 - 2 Control Cabinets and 4 Battery Cabinets
Installation

- Connected to distribution line in yard – 480V secondary from new transformer
- Mounted on concrete pad
- Local control system and operator interface
- Net metered
- Install 10 kW solar array in Fall 2013
- Additionally - Cooper Recloser for distribution system interruption when required
Testing

- ~ 18 month test period
 - Purpose: Test performance of system over different conditions
- Automated control
 - Schedule Charge/Discharge Cycles via Software
 - Select duration and start/stop day & time
 - Real Time Monitoring for Load and Generation
 - Conduct Load Following
 - Firing of Renewables
 - Frequency of Solar PV and Frequency of Grid
- Manual control
 - Start a charge or discharge immediately
Testing

- What will this tell us?
- Real performance data
 - Measurements included in system
 - How they relate to performance
 - Measured kW on feeder
 - Adjusted Demand
 - Ramp up/down cycle and repetition of cycles
 - Battery measurements
Renewable Integration

- Installation of small scale solar PV - fall 2013
 - 10 kW solar array
 - Used to charge batteries
 - Net metered
Idaho Falls Power -10 kW Solar Support
Distributed Generation

- **Pacific Northwest Smart Grid Demonstration Project**
 - One of 16 smart grid demonstration projects funded by U.S. DOE under ARRA
 - 11 utility representatives across 5 states in Pacific Northwest
 - Chance for NorthWestern Energy to learn about distributed generation from other project participants
Distributed Generation

- **Pacific Northwest Smart Grid Demonstration Project**
 - Portland General Electric - test how smart grid technologies can help maintain and improve the electrical system’s reliability
 - Integrating variable renewable power resources such as wind and solar – compensation methods only
 - Creating a high-reliability zone for customers using a 5-MW (1.25 MWh battery) energy storage system in concert with customers’ back-up generators
 - Oldest DG with over 75 MW
Distributed Generation

- Pacific Northwest Smart Grid Demonstration Project
 - City of Ellensberg - Renewables Park
 - Help mitigate regional over-generation (high-wind, high-water events) by using the project’s transactive control system to automatically take the Park off and on-line as necessary
 - Test of centralized small renewables verses dispersed small renewables
 - Benton PUD (Washington State) - small-scale distributed energy storage and generation
 - Demonstrate how devices could be dispatched to firm intermittent wind generation and to reduce peak electrical demand
Wind Integration Project

- Pacific Northwest Utilities
 - 3 - 10 kW / 40 kWh Systems
 - Coordinated operation across 3 local utilities to use storage to balance wind integration